Realising potential

GCSE Maths:
 Answers and commentaries

Foundation Tier - Paper 3

A closer look at the live questions from summer 2022 v1.0

Contents

Foundation Tier - Paper 3 5
Question 5(b) 5
Question 6 13
Question 8 18
Question 9 25
Questions 11(a) and 11(b) 32
Questions 12(a) and 12(b) 41
Question 14(b) 50
Questions 15(a) and 15(b) 57
Question 16 65
Question 21 71
Question 22 78
Question 24 85
Question 25 91
Question 27 98
Question 28 104

Help prepare your GCSE students with confidence

Every year in GCSE Maths exams, students often misread, misunderstand or misinterpret questions and don't always do what the question is asking them to do.

This booklet has been designed by our curriculum experts for you to use with your students to explore real responses. Inside you'll find best practice approaches, example responses, examiner commentaries and tips on how to access more marks.

Foundation Tier - Paper 3

Question 5(b)

5 (b) Times for the three parts of a journey are

- 20 minutes
- 40 minutes
- 1 hour 30 minutes.

Work out the total time for the journey.
Give your answer in hours.
[2 marks]

Answer
hours

Question 5(b), response 1

5 (b) Times for the three parts of a journey are

- 20 minutes
- 40 minutes
- 1 hour 30 minutes.

Work out the total time for the journey.
Give your answer in hours.

$$
20+40=60 \mathrm{Inr}^{[2 \text { mark] }]}
$$

hours

Commentary

This student adds together the first two times in minutes and then adds to the third time.
They then converts 2 h 30 ming into 2.5 hours (decimal answer).
2 marks

Question 5(b), response 2

5 (b) Times for the three parts of a journey are

- 20 minutes
- 40 minutes
- 1 hour 30 minutes.

Work out the total time for the journey.
Give your answer in hours.
[2 marks]
$20_{n}+40_{n}=60 \mathrm{mins}$
bomins $=1 \mathrm{~h}$
$1 h+1 h 30 m=2 h 30$ ins
Answer $\quad 2 \frac{1}{2}$ hours

Commentary

This student adds together the first two times in minutes and then adds to the third time.
They then convert 2 h 30 mons into $2 \frac{1}{2}$ hours (fraction answer).
2 marks

Question 5(b), response 3

5 (b) Times for the three parts of a journey are

- 20 minutes
- 40 minutes
- 1 hour 30 minutes.

Work out the total time for the journey.
Give your answer in hours.
Th $30 \mathrm{mins}+20 \mathrm{mins}=1 \mathrm{hrt}$ gamins
hr 75 somins + 4omins-2hr3omins
\qquad
\qquad
\qquad

Answer 2 hrs 30 ming hours

Commentary

Here the student has correctly added together the three times but leaves answer in hours and minutes instead of converting to full hours and part of an hour.
1 mark

Question 5(b), response 4

5 (b) Times for the three parts of a journey are

- 20 minutes
- 40 minutes
- 1 hour 30 minutes.

Work out the total time for the journey.
Give your answer in hours.
[2 marks]

2 his 30 min
Answer \qquad 2 Lou hours

Commentary

The student has correctly added together the three times and shown them as 2 h 30 ming. However they then show only the complete number of hours in the answer line.
1 mark

Question 5(b), response 5

5 (b) Times for the three parts of a journey are

- 20 minutes
- 40 minutes
- 1 hour 30 minutes.

Work out the total time for the journey.
Give your answer in hours.

$20+40=60$	60 rim
$1.30+30=2.00$	$=1$ hour
$+30=2.30$	

2 hour, 30 minute

Answer
2.3 hours

Commentary

The student correctly adds together the three times and show as 2 h 30 mons but then incorrectly converts to number of hours. There is a misconception that time follows the decimal system.
1 mark

Question 5(b), response 6

5 (b) Times for the three parts of a journey are

- 20 minutes
- 40 minutes
- 1 hour 30 minutes.

Work out the total time for the journey.
Give your answer in hours.
[2 marks]

Answer

hours

Commentary

In this answer the student shows their method to add the times. They add the minutes to total 90 minutes and then shows this next to 1 hour.

However, they incorrectly give the answer as 1 hour ignoring the 90 minutes.
1 mark

Question 5(b), response 7

5 (b) Times for the three parts of a journey are

- 20 minutes
- 40 minutes
- 1 hour 30 minutes.

Work out the total time for the journey.
Give your answer in hours.
[2 marks]

\qquad
\qquad

Answer \qquad hours

Commentary

The student has shown their method to add times. They add minutes to total 90 minutes and then show next to 1 hour.
They incorrectly give the answer as 2 hours, ignoring the additional 30 minutes. 1 mark

Question 6

6 Pens cost 20p each.
Rulers cost 60p each.
Saj buys some pens and some rulers.
He buys 8 rulers.
The total cost is $£ 10$
How many pens does he buy?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Question 6, response 1

6 Pens cost 20p each.
Rulers cost 60p each:
Saj buys some pens and some rulers.
He buys 8 rulers.
The total cost is $£ 10$
How many pens does he buy?
\qquad
\qquad
\qquad

Answer \qquad

Commentary
Fully correct solution.
3 marks

Question 6, response 2

6 Pens cost 20p each.
Rulers cost 60p each.
Saj buys some pens and some rulers.
He buys 8 rulers.
The total cost is $£ 10$
How many pens does he buy?
pens = 2 op
Total $=\mathrm{E10}$
\qquad
Peelers $=60 \mathrm{p}$ (8)
$60 p(8)=E 4.80$
$E 10-E 4.80=E 5.2$

Answer 5

Commentary

This answer correctly calculates the total of 8 rulers and correctly subtracts $£ 4.80$ from $£ 10$ to achieve $£ 5.20$.

It does not progress to work out the number of pens he buys with $£ 5.20$.
2 marks

Question 6, response 3

6 Pens cost 20p each.
Rulers cost 60p each.
Saj buys some pens and some rulers.
He buys 8 rulers.
The total cost is $£ 10$
How many pens does he buy?
$60 p \div 8=57.50 \quad 27.50$
$620 p \div 8=22.50 \quad \frac{2.50}{210.00}$
\qquad
\qquad
\qquad
\qquad

Answer

Commentary

This student incorrectly divides 60 p by 8 to get $£ 7.50$ and then equivalently subtracts $£ 7.50$ from $£ 10$ for the second independent method mark.

1 mark

Question 6, response 4

6 Pens cost 20p each.
Rulers cost 60p each.
Saj buys some pens and some rulers.
He buys 8 rulers.
The total cost is $£ 10$
How many pens does he buy?

\qquad
\qquad

Answer

Commentary

The student correctly calculates the total of 8 rulers and correctly subtracts $£ 4.80$ from $£ 10$ to achieve $£ 5.20$. They then appears to use build up to $£ 5$ for 25 pens without dividing.
They may not have used a calculator.
2 marks

Question 8

8 In this question use 1 litre $=1000$ millilitres
A mixture is made using white paint and red paint.
amount of white paint $=$ amount of red paint $\div 7$
5.6 litres of red paint will make more than 6 litres of the mixture.

How much more?
Give your answer in millilitres.

Question 8, response 1

8 In this question use 1 litre $=1000$ millilitres
A mixture is made using white paint and red paint.

$$
\text { amount of white paint }=\text { amount of red paint } \div 7
$$

5.6 litres of red paint will make more than 6 litres of the mixture.

How much more?
Give your answer in millilitres.

$$
5.6-7=0.8=800 \mathrm{~m}^{[4 \mathrm{marks}]}
$$

$f_{p}=5.6=5600 \mathrm{M} \quad 5600-800=$ 4800
\qquad
\qquad

Commentary

The student correctly works out $5.6 \div 7=0.8$ and coverts to 800 ml .
They then subtracted 800 from 5600 instead of adding onto 5600 to achieve 6400 ml .
2 marks

Question 8, response 2

8 In this question use 4 litre $=1000$ millilitres-
A mixture is made using white paint and red paint.

$$
\text { amount of white paint }=\text { amount of red paint } \div 7
$$

5.6 litres of red paint will make more than 6 litres of the mixture.

How much more?
bow om

Give your answer in millilitres.

$$
5600+800=6400
$$

$$
6400-600=400 \text { milutiones }
$$

\qquad
\qquad
\qquad

Commentary
Fully correct solution.
4 marks

Question 8, response 3
$8 \quad$ In this question use 1 litre $=1000$ millilitres
A mixture is made using white paint and red paint.

$$
\text { amount of white paint }=\text { amount of red paint } \div 7
$$

5600
5.6 litres of red paint will make more than 6 litres of the mixture.

How much more?
Give your answer in millilitres.
[4 marks]

$$
5,6 \div 1000=5600
$$

$5600 \div 7=800$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad ml

Commentary

Here the student correctly converts 5.6 litres to 5600 ml and then correctly works out $5600 \div 7=800 \mathrm{ml}$ for the amount of white paint but does not progress further.
2 marks

Question 8, response 4

8 In this question use 1 litre $=1000$ millilitres
A mixture is made using white paint and red paint.
amount of white paint $=$ amount of red paint $\div 7$
5.6 litres of red paint will make more than 6 litres of the mixture.

How much more?
Give your answer in millilitres.
5600
[4 marks]

Tboblabook

$5600+800=6400$

Answer and om 6400 mi

Commentary

In this answer the student correctly works out $5.6 \div 7=0.8$ and coverts to 800 ml for the white paint.
They then correctly add the red and white paint together to total 6400 ml but does not work out how much more the total paint is than 6 litres.
2 marks

Question 8, response 5

8 In this question use 1 litre $=1000$ millilitres
A mixture is made using white paint and red paint.

$$
\text { amount of white paint }=\text { amount of red paint } \div 7
$$

5.6 litres of red paint will make more than 6 litres of the mixture.

How much more?

Give your answer in millilitres.

Question 8, response 6

8 In this question use 1 litre $=1000$ millilitres
A mixture is made using white paint and red paint.

$$
\text { amount of white paint }=\text { amount of red paint } \div 7
$$

5.6 litres of red paint will make more than 6 litres of the mixture.

How much more?
Give your answer in millilitres.
[4 marks]
llitne $=1000$ mbilitnes
\qquad
5. Ce Red $=6+$ mixture
white $=$ Red: $\div 7=5.6 \div 7=0.8$
$0 \cdot 8+5 \cdot 6=6+$ mixture.
$=6.4$
Fe it tres, 40 minieitnes.

$$
\text { Answer } 40
$$ ml

Commentary

In this method the student correctly works out $5.6 \div 7=0.8$ and adds to 5.6 to achieve 6.4 litres of paint in total.

They do not correctly convert 6.4 litres to 6400 ml and incorrectly states the answer as 40 ml rather than 400 ml .
2 marks

Question 9

9 Some students were asked about their daily exercise.

9 (a) 12 more students answered Yes than answered No.
Complete the frequency tree.

9 (b) One of the 35 students who answered $Y e s$ is chosen at random.
What is the probability that they exercise for at least 1 hour?

Answer \qquad

Question 9, response 1

9 Some students were asked about their daily exercise.

9 (a) 12 more students answered Yes than answered No. Complete the frequency tree.

Commentary
Fully correct solution.
3 marks

Question 9, response 2

9 Some students were asked about their daily exercise.

9 (a) 12 more students answered Yes than answered No.
Complete the frequency tree.
[3 marks]

Commentary

8 is correct for 'Less than 1 hour Exercising' but the student incorrectly uses 12 from the question (possibly misreads) for 'No exercise taken'. They then correctly follow through to score B1ft for $35+12=47$.
2 marks

Question 9, response 3

9 Some students were asked about their daily exercise.

9 (a) 12 more students answered Yes than answered No.
Complete the frequency tree.

Commentary

The student correctly places 8 and 23 in correct ovals for 'Less than 1 hour Exercising' and 'No exercise taken'. They then incorrectly add together $35+27=62$ for the final mark instead of $35+23=58$.

2 marks

Question 9, response 4

9 Some students were asked about their daily exercise.

9 (a) 12 more students answered Yes than answered No.
Complete the frequency tree.

Commentary

15 is incorrect for 'Less than 1 hour Exercising' then 23 is correct for 'No exercise taken' with 100 incorrect as 'Total number of students'. Presumably the candidate thought that the total had to be out of 100 .
1 mark

Question 9, response 5

9 Some students were asked about their daily exercise.

9 (a) 12 more students answered Yes than answered No.
Complete the frequency tree.

Commentary

8 is correct for 'Less than 1 hour Exercising' but the student incorrectly adds 12 onto 35 to give 47 for 'No exercise taken'. They then correctly follows through to score B1ft for $35+47=82$.

2 marks

Question 9, response 6

9 Some students were asked about their daily exercise.

9 (a) 12 more students answered Yes than answered No. Complete the frequency tree.

Commentary

8 is correct for 'Less than 1 hour Exercising' but makes an error in subtracting 12 from 35 (probably without using a calculator) to give 13 for 'No exercise taken'. They then correctly follow through to score B1ft for $35+13=48$.
2 marks

Questions 11(a) and 11(b)

11 (a) Here is a number machine.

Work out the output.
[1 mark]

Answer \qquad

11 (b) Here is a different number machine.

Work out a formula for d in terms of c.
[2 marks]
\qquad
\qquad

Answer \qquad

Question 11(a), response 1

11 (a) Here is a number machine.

Work out the output.
[1 mark]
$58+26=84$

$$
84 \div 21=4
$$

Answer 4

Commentary

Fully correct answer with 4 given on the answer line.
1 mark

Question 11(a), response 2

11 (a) Here is a number machine.

Work out the output.
[1 mark]
$58+26=82$

$$
82 \div 21 \div 3.9
$$

Answer \qquad

Commentary

The student has made a mistake in the addition of $58+26$ (probably without using a calculator) to give 82. The error does not allow a mark as there is an independent mark for a correct answer of 4 , even with correct method shown.
0 marks

Question 11(a), response 3

11 (a) Here is a number machine.

Work out the output.
[1 mark]

$58+26 \div 21=59.23$

Answer \qquad 59.23

Commentary

The candidate has used the priority of operations, causing an error where they work out 26 divided by 21 and then added it onto 58.
The rule of the function machine must be used by doing the addition first, either by adding $58+26=84$ and then dividing by 21 to give correct answer 4 , or by correctly using brackets in the calculator $(58+26) \div 21=4$.
0 marks

Question 11(b), response 1

11 (b) Here is a different number machine.

Work out a formula for d in terms of c.
[2 marks]
\qquad
\qquad

$$
\text { Answer } d=C \times 3-5
$$

Commentary

This is a correct solution with the use of the multiplication sign $c \times 3$ condoned.
2 marks

Question 11(b), response 2

11 (b) Here is a different number machine.

Work out a formula for d in terms of c.
[2 marks]

$$
d=3 c-5
$$

$$
\text { Answer } d=3 c-5
$$

Commentary

Fully correct solution with correct use of algebra without multiplication sign for $3 c$.
2 marks

Question 11(b), response 3

11 (b) Here is a different number machine.

Work out a formula for d in terms of c.
[2 marks]
\qquad

Answer

Commentary

No subject stated, the student only shows the correct right hand side of the formula and so loses one mark.

1 mark

Question 11(b), response 4

11 (b) Here is a different number machine.

Work out a formula for d in terms of c.
[2 marks]

Commentary

The student incorrectly works backwards from right to left showing the inverse function of the correct answer $d=3 c+5$.

1 mark

Question 11(b), response 5

11 (b) Here is a different number machine.

Work out a formula for d in terms of c.
[2 marks]

$$
d=c \times 3-5
$$

$$
c \times 3=3 c 3 c-5=-2 c
$$

$$
\text { Answer }-2 c
$$

Commentary

This student correctly uses the function machine to show the correct answer on the first line but then produces further incorrect work with an attempt to collect like terms incorrectly showing $3 c-5=-2 c$.
1 mark

Questions 12(a) and 12(b)

12 (a) Simplify fully $9 x+y-6 x+y$

Answer

12 (b) Here are two expressions.

When $\quad a=25$ the expressions have the same value.
Work out the value of b.
[3 marks]
\qquad
\qquad
\qquad
\qquad

$$
b=
$$

\qquad

Question 12(a), response 1

12 (a) Simplify fully $9 x+y-6 x+y$

```
\(a x-b x=3 x\)
    \(4+4=24=3 x+24\)
```


Answer $3 x+2 y$.

Commentary

Fully correct solution.
2 marks

Question 12(a), response 2

12 (a) Simplify fully $9 x+y-6 x+y$
\qquad
\qquad

Answer $15 x-2 y$

Commentary

Incorrect collection of like terms to $15 x$ and $-2 y$ without working scores no marks.
0 marks

Question 12(a), response 3

12 (a) Simplify fully $9 \grave{x}+y-6 x^{2}+y$
[2 marks]

Answer \qquad

Commentary

Answer $15 x-2 y$ with working for $2 y$ shown scores B1 for $2 y$ correctly collected.
1 mark

Question 12(a), response 4

12 (a) Simplify fully $9 x+y-6 x+y$

Commentary
Correct collection of $2 y$ is B1.
1 mark

Question 12(a), response 5

12 (a) Simplify fully $9 x+y-6 x+y$

$$
\begin{gathered}
9 x+y-6 x+y=9 x-6 x=3 x \\
y y+y=y^{2} \\
\text { Answer } \quad 3 x+y^{2}
\end{gathered}
$$

Commentary
Correct collection of $3 x$ is B1.
1 mark

Question 12(a), response 6

12 (a) Simplify fully $9 x+y-6 x+y$
[2 marks]

Answer $\quad 3 x-2 y$

Commentary
A common error was to show $3 x-2 y$ which scores B1 for $3 x$.
1 mark

Question 12(a), response 7

12 (a) Simplify fully $9 x+y-6 x+y$

Commentary
Choice on answer line means that B1 only is awarded for $3 x$ or $2 y$.
1 mark

Question 12(a), response 8

12 (a) Simplify fully $9 x+y-6 x+y$

- $1 / 1$

$$
\begin{aligned}
& 9 x-6 x=3 x \\
& y+y=32 y \quad 3 x+2 y=5 x y
\end{aligned}
$$

Answer $\quad 5 x y$

Commentary
Answer of $5 x y$ means that B1 only is awarded for $3 x$ or $2 y$.
1 mark

Question 12(b), response 1

12 (b) Here are two expressions.

When $a=25$ the expressions have the same value.
Work out the value of b.

$$
\begin{aligned}
& 25 \times 8=200 \\
& 25^{2}=625
\end{aligned}
$$

[3 marks]

Commentary

Fully correct solution.
3 marks

Question 12(b), response 2

12 (b) Here are two expressions.
$8 a \quad a^{2}-b$

When $\quad a=25$ the expressions have the same value.
Work out the value of b.
$8 a=$
8×25.200
\qquad

$$
b=
$$

Commentary

First M1 scored for 200 or 252 or 625
Second M1 scored for $625-b$
Forming the equation $200=625-b$ would have been the next correct step.
2 marks

Question 12(b), response 3

12 (b) Here are two expressions.

When $a=25$ the expressions have the same value.
Work out the value of b.

$$
8 \times 5=40
$$

\qquad

$$
25^{2}-b
$$

$$
=625-585=40
$$

$$
b=585
$$

\qquad

$$
b=58 \mathrm{~S}
$$

Commentary

First M1 scored for 252 or 625
Second M1 not awarded as 8×5 is not a correct method to use 40 in the next step.
1 mark

Question 12(b), response 4

12 (b) Here are two expressions.

When $\quad a=25$ the expressions have the same value.
Work out the value of b.
[3 marks]

$$
b=\quad 17
$$

Commentary

Here there is a misconception that $8 a$ means $8+25$ together with misconception that $a^{2}=2 \times 25$.
There is no correct working shown and scores zero.
0 marks

Question 14(b)

1420 students are asked how many video games they played last month. The chart shows information about the results.

14 (a) How many students played more than 2 games?

Answer \qquad

14 (b) Work out the mean number of games played.
Give your answer as a decimal.
[3 marks]

Answer

Question 14(b), response 1

14 (b) Work out the mean number of games played.
Give your answer as a decimal.
\qquad
\qquad 2.

Commentary
Fully correct solution.
3 marks

Question 14(b), response 2

14 (b) Work out the mean number of games played.
Give your answer as a decimal.
[3 marks]

Commentary

The first M1 scored for five correct products totalled to 48. The student then incorrectly divides by 5 rather than by 20.
1 mark

Question 14(b), response 3

14 (b) Work out the mean number of games played. Give your answer as a decimal.
Shiest gowns
[3 marks]

Answer
3.2

Commentary

The first M1 is scored for five correct products totalled to 48 . The student then incorrectly divides by 15 rather than by 20.

1 mark

Question 14(b), response 4

14 (b) Work out the mean number of games played.
Give your answer as a decimal. - How?
[3 marks]
$7+5+4+1+3=20$
$20 \div 5=4$
\qquad
\qquad
\qquad
\qquad

Answer

Commentary

There is no multiplication of the number of students by the number of games to achieve the correct products. The number of students has been added to an incorrect total of 20 and divided by 5 .
0 marks

Question 14(b), response 5

14 (b) Work out the mean number of games played.
Give your answer as a decimal.
[3 marks]

\qquad $15 \div s=3$
\qquad

3.0

Answer \qquad 2

Commentary

There is no multiplication of the number of students by the number of games to achieve the correct products. The number of games has been added to an incorrect total of 15 and then divided by 5 .
0 marks

Questions 15(a) and 15(b)

15 (a) Work out the multiple of 60 that is closest to 400
[2 marks]

Answer \qquad

15 (b) Work out the highest common factor (HCF) of 12 and 18

Answer \qquad

Question 15(a), response 1

15 (a) Work out the multiple of 60 that is closest to 400

\qquad
\qquad

Answer \qquad

Commentary
Fully correct solution.
2 marks

Question 15(a), response 2

15 (a) Work out the multiple of 60 that is closest to 400

\qquad

Answer \qquad

Commentary
Multiples of 60 are shown with 360 and 420 both indicated but the answer line does not show the correct answer, 420.
1 mark

Question 15(a), response 3

15 (a) Work out the multiple of 60 that is closest to 400

\qquad
\qquad

Answer \qquad $=360$

Commentary

360 is shown on answer line rather than the correct answer of 420 .
1 mark

Question 15(a), response 4

15 (a) Work out the multiple of 60 that is closest to 400
[2 marks]
\qquad
Answer

Commentary

420 indicated as the closest multiple but the 7th multiple indicated as the answer with 7 rather than the correct answer of 420 .
1 mark

Question 15(a), response 5

15 (a) Work out the multiple of 60 that is closest to 400
[2 marks]
> $60 \times 2=43012060 \times 6 \leq 260$
> $60 \times 3=180 \quad 60 \times 7=420$
> $60 \times 4=240$
> $60 \times 5 \leq 300$

Answer 60×7

Commentary

420 is shown in the working but 60×7 is shown on the answer line, rather than the correct answer of 420 .
1 mark

Question 15(b), response 1

15 (b) Work out the highest common factor (HCF) of 12 and 18

\qquad

Answer

Commentary

Fully correct solution with the highest common factor selected from a correct list of prime factors of 12 and 18.
2 marks

Question 15(b), response 2

15 (b) Work out the highest common factor (HCF) of 12 and 18

Answer \qquad

Commentary

Fully correct solution with the highest common factor selected from a correct simplification and divisions showing 6 as the highest common factor.
2 marks

Question 15(b), response 3

15 (b) Work out the highest common factor (HCF) of 12 and 18
\qquad

Commentary

Fully correct solution with the highest common factor calculated from a Venn diagram and prime factor decomposition of 12 and 18.
2 marks

Question 15(b), response 4

15 (b) Work out the highest common factor (HCF) of 12 and 18
[2 marks]

(22)

Answer
108
84
96
108

Commentary

This student has incorrectly shown the multiples of 12 and 18 rather than calculating factors.
2 marks

Question 15(b), response 5

15 (b) Work out the highest common factor (HCF) of 12 and 18

Commentary

3 has been selected as a common factor of 12 and 18 from a list of factors of 12 and 18 without recognising that 6 is the highest common factor.
1 mark

Question 16

An empty container is a cylinder of radius 3.5 cm and height 40 cm
A tennis ball is a sphere of radius 3.5 cm
Will six of the tennis balls fit in the container?
Tick a box.

Show working to support your answer.
[2 marks]

Question 16, response 1

16 An empty container is a cylinder of radius 3.5 cm and height 40 cm
A tennis ball is a sphere of radius 3.5 cm
Will six of the tennis balls fit in the container?
Tick a box.

Show working to support your answer.
$3.5 \times 2=7 \mathrm{~cm} \rightarrow$ height of ball
\qquad
$7 \times 6=42$
\qquad
\qquad
\qquad

Commentary

Fully correct solution working out the diameter as 7 cm and then calculating the total height of 6 tennis balls as 42 cm and selecting No.

2 marks

Question 16, response 2

16 An empty container is a cylinder of radius 3.5 cm and height 40 cm
A tennis ball is a sphere of radius 3.5 cm
Will six of the tennis balls fit in the container?
Tick a box.
Yes \square
No

Show working to support your answer.
[2 marks]
k diameter $=7 \mathrm{~cm}(3.5+3.5)$
height $=40 \mathrm{~cm}$
$40 \div 7=5.7$
$40 \div 6=6.6$ only 5 will fit
$40 \div 5=8 \quad$ neo the container
\qquad

Commentary

Fully correct solution working out the diameter as 7 cm and then dividing the height of the container by 7 to work out that 5.7 tennis balls will fit in the container. The student has ticked No.

2 marks

Question 16, response 3

16 An empty container is a cylinder of radius 3.5 cm and height 40 cm
A tennis ball is a sphere of radius 3.5 cm
Will six of the tennis balls fit in the container?
Tick a box.

Show working to support your answer.
 balls con.

Commentary

The student has made no calculation for the diameter and divides the height of the container by the radius of the tennis balls.

0 marks

Question 16, response 4

16 An empty container is a cylinder of radius 3.5 cm and height 40 cm
A tennis ball is a sphere of radius 3.5 cm
Will six of the tennis balls fit in the container?
Tick a box.

Show working to support your answer.
[2 marks]

\qquad
\qquad
\qquad
\qquad

Commentary

This student has made no calculation for the diameter and works out the height of 6 radii of the tennis balls.
0 marks

Question 16, response 5

16 An empty container is a cylinder of radius 3.5 cm and height 40 cm A tennis ball is a sphere of radius 3.5 cm

Will six of the tennis balls fit in the container?
Tick a box.

No

Show working to support your answer.

[2 marks]

πr^{2}

$13 \cdot 5^{2}=38=5$

Commentary

Misconception to work out the area of the cross section of a tennis ball.
0 marks

Question 21

Use trigonometry to work out the size of angle x.

Not drawn accurately
[3 marks]
$x=$。

Question 21, response 1

21 Use trigonometry to work out the size of angle x.

Not drawn
accurately
[3 marks]

$\left.\tan ^{-1} \left\lvert\, \frac{11}{2}\right.\right) 668.19859051$
$\tan A=\frac{\square}{b}$
$\operatorname{tax} x=\frac{8}{f}$

$$
x=68.2
$$

Commentary
Fully correct solution.
3 marks

Question 21, response 2

21 Use trigonometry to work out the size of angle x.

$10^{2}+4^{2}=c^{2}$
$c^{2}=116$
$x=116^{\circ}$

$$
x=116
$$

Commentary
Misconception with an attempt to calculate the hypotenuse length.
0 marks

Question 21, response 3

21
Use trigonometry to work out the size of angle x.

Not drawn
accurately
[3 marks]
$\operatorname{Tan} x=\frac{4}{10} \quad 0.4$
$\operatorname{Tan}^{-1}(0.4)=21.80140949$
\qquad
\qquad
\qquad

$$
x=21.80140949
$$

Commentary

The first method mark is given for correctly identifying tangent but $\tan x=\frac{4}{10}$ is incorrect. 1 mark

Question 21, response 4

21 Use trigonometry to work out the size of angle x.

\qquad
\qquad
\qquad
$x=23,4$

Commentary

The student gains the first method mark for correctly identifying tangent
$\tan =\frac{10}{4}$ without $\tan x$ is incorrect but $\tan ^{-1} \frac{10}{4}$ scores the second method mark with incorrect answer 23.4 shown.
2 marks

Question 21, response 5

21 Use trigonometry to work out the size of angle x.

Not drawn accurately
[3 marks]

Sohcan ToG

$O P P=10 \mathrm{~cm}$
 $10 \div 4=2.5$

$A d J=4$
\qquad

$$
x=\quad 00
$$

Commentary

The first method mark is awarded for correctly identifying tangent $\frac{10}{4}$ is incorrect for second method mark without $\tan x=\frac{10}{4}$ or $\tan ^{-1} \frac{10}{4}$. 1 mark

Question 21, response 6

21 Use trigonometry to work out the size of angle x.

Not drawn
accurately
[3 marks]

$\cos x^{\mu}=10$
\qquad
\qquad

$$
x=
$$

\qquad

Commentary

Misconception in using $\cos x=\frac{10}{4}$ instead of $\tan x=\frac{10}{4}$ scores MO.
0 marks

Question 22

Laura works in a shop.
The table shows the number of hours she works on two weekends.

	Saturday	Sunday
Weekend 1	3	2
Weekend 2	$5 \frac{1}{2}$	$3 \frac{1}{2}$

Work out the percentage increase in her total hours from Weekend 1 to Weekend 2
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad \%

Question 22, response 1

22 Laura works in a shop.
The table shows the number of hours she works on two weekends.

	Saturday	Sunday
Weekend 1	3	2
Weekend 2	$5 \frac{1}{2}$	$3 \frac{1}{2}$

Work out the percentage increase in her total hours from Weekend 1 to Weekend 2

$5=100 \%$	$180 \%=80 \%$
$4=80 \%$	-100%
increase	

Answer
 \%

Commentary
Fully correct solution with method of equating 5 hours to 100\%.
3 marks

Question 22, response 2

22 Laura works in a shop.
The table shows the number of hours she works on two weekends.

	Saturday	Sunday
Weekend 1	3	2
Weekend 2	$5 \frac{1}{2}$	$3 \frac{1}{2}$

Work out the percentage increase in her total hours from Weekend 1 to Weekend 2
[3 marks]
Total mominer of hours for w $=5$
Ital ene number of hours tor $\omega 2=9$
$5 / 9=0.5$

$$
s=a \times 100=\text { percantaus thine }
$$

$$
s=9-0.5 \times 100=55.5
$$

55.5 \%

Commentary

5 and 9 have been identified as the correct increase in hours for W1 and W2 for the first method mark.

An incorrect method has been used to calculate percentage increase, dividing 5 by 9 instead of 9 by 5 .
1 mark

Question 22, response 3

22 Laura works in a shop.
The table shows the number of hours she works on two weekends.

	Saturday	Sunday
Weekend 1	3	2
Weekend 2	$5 \frac{1}{2}$	$3 \frac{1}{2}=9 \mathrm{hrs}$
Whirs		

Work out the percentage increase in her total hours from Weekend 1 to Weekend 2
[3 marks]

$$
\begin{array}{ll}
5 \times 60=300 & 540-300=240 \\
9 \times 60=540 &
\end{array}
$$

$$
9+5=14
$$

$$
9-5=4=40 \%
$$

Answer
 \%

Commentary

5 and 9 have been identified as the correct increase in hours for W1 and W2 for the first method mark.

An incorrect method has been used to calculate percentage increase with 4 hours incorrectly equated to 40\%.
1 mark

Question 22, response 4

22 Laura works in a shop.

The table shows the number of hours she works on two weekends.

	Saturday	Sunday
Weekend 1	3	2
Weekend 2	$5 \frac{1}{2}$	$3 \frac{1}{2}$

Work out the percentage increase in her total hours from Weekend 1 to Weekend 2

Commentary

5 and 9 have been identified as the correct increase in hours for W1 and W2 for first method mark.

The correct method has been used to calculate percentage increase, by equating $100 \%=5$ hours (300 mins) and $1 \%=3$ mons, to then correctly show $540 \div 3=180 \%$ for the second method mark.

The student misses the final step of $180-100=180 \%$.
2 marks

Question 22, response 5

22 Laura works in a shop.
The table shows the number of hours she works on two weekends.

	Saturday	Sunday
Weekend 1	3	2
Weekend 2	$5 \frac{1}{2}$	$3 \frac{1}{2}$
Sirs		q his.
$+\frac{11}{2}$	$\frac{7}{2}$	

Work out the percentage increase in her total hours from Weekend 1 to Weekend 2

$$
\text { hexad 1 }=5 \text { hrs. }-300 \mathrm{~min} \text {. }
$$

[3 marks]
heeled 2: 4 his - 540 min

$$
q-5=\frac{4 / 5 \times 100}{50}=180 \% \quad 300 \times 1.80
$$

$5 \div 4=9 / 4 \times(00=5) \div 5^{\circ}$

Answer
 \%

Commentary

5 and 9 have been identified as the correct increase in hours for W1 and W2 for the first method mark.

The student has used the correct method to calculate percentage increase, dividing 9 by 5 and multiplying by 100 to show 180%.
This answer is missing the final step of $180-100=180 \%$.
2 marks

Question 22, response 6

22 Laura works in a shop.
The table shows the number of hours she works on two weekends.

	Saturday	Sunday
Weekend 1	3	2
Weekend 2	$5 \frac{1}{2}$	$3 \frac{1}{2}$

Work out the percentage increase in her total hours from Weekend 1 to Weekend 2
[3 marks]

$$
\begin{aligned}
& \text { weekend } 1=3 \mathrm{~h} \text { sat } 2 \mathrm{hsun} \\
& \text { weekend } 2=5 \mathrm{~h} 30 \mathrm{mins} \text { gat } 3 \mathrm{~h} 30 \text { minssun } \\
& 3 \times 60=180 \quad \text { hand }=300 \mathrm{mins} \\
& 2 \times 60=120 \quad \text { wand } 2=540 \mathrm{mins} \\
& 5 \times 60=300+30=330 \quad \frac{300}{540} \times 100=55 \% \\
& 3 \times 60=180+30=210
\end{aligned}
$$

Answer \qquad 55 \%

Commentary

300 and 540 have been identified as the correct increase in hours for W1 and W2 for the first method mark.
The student has used an incorrect method to calculate percentage increase, dividing 300 by 540 instead of 540 by 300 .
1 mark

Question 24

24 A is an arithmetic progression.
Here are the first four terms.

13	16	19	22

G is a geometric progression.
Here are the first four terms.
$\begin{array}{llll}2 & 4 & 8 & 16\end{array}$
nth term of $A=8$ th term of G

Work out the value of n.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$n=$ \qquad

Question 24, response 1
$24 \quad \mathrm{~A}$ is an arithmetic progression.
Here are the first four terms.

G is a geometric progression.
Here are the first four terms.

nth term of $A=8$ th term of G

Work out the value of n.
nth term of $A=3 n+10=$
$3 n+10=8$ th term of G

$$
\begin{array}{ll}
16 \times 2=32 & 3 n+10=256 \\
32 \times 2=64 & -10 \\
64 \times 2=128 & \div 3 n=246^{-10} \\
128 \times 2=256 & n=82^{\div 3}
\end{array}
$$

$$
n=82
$$

Commentary
Fully correct solution.
4 marks

Question 24, response 2

24 A is an arithmetic progression.
Here are the first four terms.
13
16
19
22

G is a geometric progression.
Here are the first four terms.
2
4
8
16

$$
n \text {th term of } A=8 \text { th term of } G
$$

Work out the value of n.
[4 marks]

$$
31+10=256
$$

\qquad
\qquad

$$
n=\quad \sum \sum 6
$$

Commentary

The student correctly identifies $3 n+10$ as nth term for the arithmetic progression and 256 as the 8th term of the geometric progression for the first two method marks.
The third mark is scored for equating $3 n+10=256$ but the student does not evaluate the solution.
3 marks

Question 24, response 3
$24 \quad \mathrm{~A}$ is an arithmetic progression.
Here are the first four terms.

G is a geometric progression.
Here are the first four terms.

Work out the value of n.
[4 marks]
\qquad
\qquad
$4 n+10=256$
$16 \times 2=32 \times 2=64 \times 2=128 \times 2=256$
\qquad
\qquad
$n=$ \qquad

Commentary

The student has correctly identified 256 as the 8th term of the geometric progression for the second method mark.

1 mark

Question 24, response 4
$24 \quad \mathrm{~A}$ is an arithmetic progression.
Here are the first four terms.

$$
3 n+10
$$

G is a geometric progression.
Here are the first four terms.

$$
n \text {th term of } \mathrm{A}=8 \text { th term of } \mathrm{G}
$$

Work out the value of n.
[4 marks]

$$
\begin{array}{llll}
32 & 64 & 128 & 256
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

$$
n=\quad 256
$$

Commentary

The student correctly identifies $3 n+10$ as nth term for the arithmetic progression and 256 as the 8th term of the geometric progression for the first two method marks.
They do not equate $3 n+10=256$ for the third method mark..
2 marks

Question 24, response 5
$24 \quad$ A is an arithmetic progression.
Here are the first four terms.

19
22

G is a geometric progression.
Here are the first four terms.

Work out the value of n.
$2,4,8,16,32,64,128,256$
$8^{\text {th }}$ term of $G=256$

$$
256-13=243 \div 3 \div 81
$$

$A=13 n+3$ 81
$G=2 n \times 2$
\qquad

$$
n=256 \quad 81
$$

Commentary

This answer correctly identifies the common difference of 3 for the arithmetic progression and 256 as the 8th term of the geometric progression for the first two method marks.

The third mark is scored for $(256-13) \div 3$.
3 marks

Question 25

The L-shape is made from rectangles.

The area is $44 \mathrm{~cm}^{2}$
Work out the perimeter.
\qquad
\qquad
\qquad
\qquad

Answer cm

Question 25, response 1

25 The L-shape is made from rectangles.

The area is $44 \mathrm{~cm}^{2}$
Work out the perimeter.
[3 marks]
\qquad
$2+4+7+3+10+12=38$
\qquad
\qquad
\qquad
\qquad

Answer 35 cm

Commentary

Fully correct solution with areas of 14 and 30 shown on diagram together with correct lengths of 12 and 10.
Correct addition of all lengths shown with correct answer 38 cm indicated.
3 marks

Question 25, response 2

25 The L-shape is made from rectangles.

The area is $44 \mathrm{~cm}^{2}$
Work out the perimeter.
\qquad
$442 \times 4=8 \mathrm{~cm}^{2}=44-8=36$
$=x \times 3=36=36 \div 3=12$
$=$ base $=12$
$=12+3+10+4+2+7=38 \mathrm{~cm}$
\qquad

Answer \qquad cm

Commentary

Fully correct solution with areas of 8 and 36 calculated then correct length of 12 calculated from $44-8=36$ and $36 \div 3$.
Correct addition of all lengths shown with correct answer 38 cm indicated.
3 marks

Question 25, response 3

25 The L-shape is made from rectangles.

The area is $44 \mathrm{~cm}^{2}$
Work out the perimeter.

[3 marks]
Area: $44-14=30 \quad 30 \div 3=10 \mathrm{~cm}$

 perimeter: $7+2+4+8+3+10=34$

\qquad
\qquad

Answer $\quad 34$
cm

Commentary

The first method mark is given for the correct area 14 shown on diagram.
The second method mark is given for the correct calculation of 10 cm calculated from $44-14=30$ and $30 \div 3$.
Incorrect placement of the 10 cm length on the diagram leads to an incorrect perimeter.
2 marks

Question 25, response 4

25 The L-shape is made from rectangles.

The area is $44 \mathrm{~cm}^{2}$
Work out the perimeter.

\qquad
\qquad

Answer \qquad 34 cm

Commentary

No area calculation to correctly calculate missing lengths.
Incorrect length of 5 cm shown on diagram.
Perimeters of two rectangles incorrectly added together for final answer.
0 marks

Question 25, response 5

25 The L-shape is made from rectangles.

The area is $44 \mathrm{~cm}^{2}$
Work out the perimeter.

$7+2+4+6+3+8=$
 cm

Commentary

The student has made an incorrect perimeter calculation following incorrect lengths of 6 cm and 8 cm shown on diagram.
0 marks

Turn over for next question

Question 27

Information about two fridge-freezers, A and B, is shown.

Total capacity is 330 litres
fridge capacity : freezer capacity $=3: 2$

Fridge capacity is 294 litres
fridge capacity : freezer capacity $=7: 3$

Grace buys one of these fridge-freezers.
She buys the one with the greater freezer capacity.
Which one does she buy?
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Question 27, response 1

Grace buys one of these fridge-freezers.
She buys the one with the greater freezer capacity.
Which one does she buy?
You must show your working.

Answer \qquad

Commentary
Fully correct solution.
4 marks

Question 27, response 2

Grace buys one of these fridge-freezers.
She buys the one with the greaterffeezer capacity.
Which one does she buy?
You must show your working.

Answer \qquad A

Commentary

First two method marks are awarded for correctly calculating the freezer capacity for A from $330 \div 5=66$ and $66 \times 2=132$.
The correct calculation would have been $294 \div 7=42$ and $42 \times 3=126$ for the freezer capacity of B.
2 marks

Question 27, response 3

Grace buys one of these fridge-freezers.
She buys the one with the greater freezer capacity.
Which one does she buy?
You must show your working.
[4 marks]

$330 \div 5=66$ $294 \div 7=42 \quad 7 \cdot 3$
$42 \times 3=$ 294. 126
$3: 2$
$110: 165$
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

Commentary

The first method mark is awarded for $330 \div 5=66$ without proceeding to $66 \times 2=132$.
The third method mark is given for $294 \div 7=42$.
2 marks

Question 27, response 4

Grace buys one of these fridge-freezers.
She buys the one with the greater freezer capacity.
Which one does she buy?
You must show your working.
$\begin{array}{cc} & 330 \\ 3 & \therefore 2\end{array}$

$$
\frac{2}{5} \times 330=132 \text { liter of } F C
$$

294
$7: 3$

Commentary

The student is given the first two method marks for correctly calculating the freezer capacity for A from $\frac{2}{5} \times 330=132$.
$\frac{3}{7} \times 294=126$ would have been the correct calculation for the freezer capacity of B. 2 marks

Question 28

Tom and Adil are the two runners in a 200-metre race.
Tom completes the race in 24 seconds.
Adil completes the race at an average speed of 28.8 kilometres per hour.
Who wins the race?
You must show your working.

Answer

Question 28, response 1

28 Tom and Adil are the two runners in a 200-metre race.
Tom completes the race in 24 seconds.
Adil completes the race at an average speed of 28.8 kilometres per hour. Who wins the race?
You must show your working.

$$
\text { Speed }=\frac{\text { distance }}{\text { time }}
$$

Adit $=$ Ail $=8$ metres per second \quad tom 24 sees
$200 \div 8=25 s e c o n d s$
\qquad
\qquad
\qquad

Answer tom

Commentary

Fully correct solution from $\frac{28.8 \times 1000}{60 \times 60}=8 \mathrm{~m} / \mathrm{s}$ for Adil and $200 \div 8=25$ secs, to show that Adil finished after Tom and selecting Tom as the winner.
3 marks

Question 28, response 2

28 Tom and Adil are the two runners in a 200-metre race.
Tom completes the race in 24 seconds.
Adil completes the race at an average speed of 28.8 kilometres per hour.
Who wins the race?
You must show your working.
[3 marks]

$8 \times 24=192$
meters
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer

Commentary

Fully correct solution from $\frac{28.8 \times 1000}{60 \times 60}=8 \mathrm{~m} / \mathrm{s}$ for Adil and $8 \times 24=192 \mathrm{~m}$ to show that Adil finished behind Tom and selecting Tom as the winner.
3 marks

Question 28, response 3

Tom and Adil are the two runners in a 200-metre race.
Tom completes the race in 24 seconds.
Adil completes the race at an average speed of 28.8 kilometres per hour.
Who wins the race?
You must show your working.
Tom

$S=8$

$d=200$ metres Speed $=d / t$.
$t=24$ seconds

AdAdil

$5=28.8 \mathrm{~km} / \mathrm{h}$
$d=200$ metres
Lime $=d / s$.

$200 / 28.8 \mathrm{~km} / \mathrm{h}$
$=6.94$

Answer

\qquad

Commentary

This student receives the first method mark for $200 \div 24=8.3 \mathrm{~m} / \mathrm{s}$ or for $200 \div 28.8=6.94$.
1 mark

Question 28, response 4

28 Tom and Adil are the two runners in a 200-metre race.
Tom completes the race in 24 seconds.
Adil completes the race at an average speed of 28.8 kilometres per hour.
Who wins the race?
You must show your working.
[3 marks]

$$
\begin{aligned}
& 200 \div 24=8.3 \mathrm{~m} / \mathrm{s} \quad 28.8 \times 1000=28800 \mathrm{~m} / \mathrm{hev} \\
& 60 \times 60=\text { seconds in hour }=3600 \\
& 3600 \times 8.3=29880 \mathrm{~m} / \mathrm{h}
\end{aligned}
$$

$$
29880 \mathrm{~m} / \mathrm{n}>28800 \mathrm{~m} / \mathrm{m}
$$

\qquad
\qquad

Commentary

Here the first method mark is awarded for $200 \div 24=8.3 \mathrm{~m} / \mathrm{s}$.
The second method mark is given for 3600×8.3, converting $8.3 \mathrm{~m} / \mathrm{s}$ into 29880 metres per hour and comparing with $28.8 \mathrm{~km} / \mathrm{h}$ converted into 28880 metres per hour.
The final accuracy mark is lost by rounding the speed of 8.33 recurring to 8.3.
2 marks

Question 28, response 5

28 Tom and Adil are the two runners in a 200-metre race.
Tom completes the race in 24 seconds.
Adil completes the race at an average speed of 28.8 kilometres per hour.
Who wins the race?
You must show your working.

\qquad

$$
8.34>8
$$

\qquad
\qquad
\qquad
\qquad

Answer \qquad

Commentary

The student is awarded the first method mark for $200 \div 24$ for Tom.
The second method mark is given for $\frac{28.8 \times 1000}{60 \times 60}=8 \mathrm{~m} / \mathrm{s}$ for Adil.
The final accuracy mark is lost by an incorrect value for $200 \div 24$ stated as $8.34 \mathrm{~m} / \mathrm{s}$.
2 marks

Question 28, response 6

28 Tom and Adil are the two runners in a 200-metre race.
Tom completes the race in 24 seconds.
Adil completes the race at an average speed of 28.8 kilometres per hour.
Who wins the race?
You must show your working.
200 meters in 24 seconds. = TOM
28.8 kilommers per hour.
\qquad
480 meters per min

$60 \% .24=2.5$	Tom Does 500 m per
$2.5 \times 200=500$	min. Adul only does
	480 milers per min.

Answer \qquad

Commentary
Fully correct solution with a correct calculated comparison of how far Tom (500 m) and Adil (480 m) would have run in a minute.
3 marks

Question 28, response 7

28 Tom and Adil are the two runners in a 200-metre race.
Tom completes the race in 24 seconds.
Adil completes the race at an average speed of 28.8 kilometres per hour.
Who wins the race?
You must show your working.
[3 marks]

$$
I=24 \text { seconds } \frac{200}{24}=8.3 \mathrm{~m} \text { Persecond } \frac{480}{200}=2.4
$$

$$
A=28.8 \mathrm{~km} \text { for } 200 \mathrm{~m} \quad 480 \mathrm{~m}=60 \text { seconds }
$$

$$
10084 \mathrm{~m} 1000 \mathrm{~m}=1 \mathrm{~km} \quad 20 \text { seconds }
$$

$$
\frac{200}{1000}=0.2 \mathrm{~km}
$$

Average speed $=28.8 \mathrm{~km}$ Per hour

Answer Adil

Commentary

The first method mark is awarded for $200 \div 24=8.3 \mathrm{~m} / \mathrm{s}$.
The second method mark is not awarded for calculating a distance of 480 m in 60 s for Adil without a correct distance calculated for Tom in 60 s to compare with the 480 m for Adil.

1 mark

Realising potential

Contact us

Our team of subject experts are here to help and support you as you deliver our specifications.

We're here to provide advice when you need it and respond to queries you might have to make sure you feel confident about guiding your students to fulfil their potential.

We understand the trust you put in us to provide great assessments for your students and we are committed to delivering on this.

E: maths@aga.org.uk
T: 01619573852

