$\underset{\text { Realsing poonenici }}{ }$

Take a look at our GCSE Maths: Exemplar student responses

- Understand our approach
- See how students responded
- Gain an insight into how marks are awarded

Got any questions?
Call us on 01619573852 and get straight through to the Maths team, or email us at maths@aqa.org.uk

Abstract

In April 2015, we asked a number of schools to participate in a student trial of our first set of practice papers. We wanted to understand more about how individual questions perform and provide some exemplar student responses.

The research:

There were limitations with the research - schools were focusing on preparing their Year 11 students for the real examination, there wasn't the same motivation from students and it would be impossible for all schools to reproduce the conditions of a live exam. We also accepted that it would also be unreasonable to expect all students to sit a full set of papers, and that teachers would want to select
the students who took part. Additionally, the new GCSE contains some content not covered in the current specification, and it was recognised that students might not be familiar with these topics.

Despite all of this, we collected over 1,000 scripts from 10 schools and they have told us a great deal about how students approach this new GCSE.

The scripts:

In this document, we've chosen to look at two papers -1 F and 2 H - to see how students responded and similar analysis of other papers will follow.

The exemplar answers in this document are transcribed from student scripts. Sometimes they are fully correct answers and sometimes they highlight common errors or misconceptions. Alongside each question is a summary of how students performed and many of the questions are accompanied by brief comments on:

- how more successful students approached the question
- common errors, misconceptions and misunderstandings
- changes we would consider in improving our papers as a result of the evidence here.

These exemplars show how students are reacting to these questions. We see them as an important tool in helping us all understand how real students perform on these new style questions. In doing so, we hope they are of value when thinking about how to deliver the new specification in a way that prepares students for the new Assessment Objectives.

The papers:

The students in this trial sat our first set of practice papers for the new GCSE Mathematics qualification (8300), which we released in December 2014.

These were written before Ofqual's research and review, published in June 2015. As a result, they haven't been reviewed and approved by Ofqual and may not reflect in full the standard of AQA GCSE

Mathematics for 2017 and beyond.
However, the purpose of this work was to focus on how individual questions might perform and we remain confident that these questions give a good indication of what you and your students can expect in 2017.

PRACTICE PAPER SET 1

ExEmplar Script

GCSE

Mathematics
 Specification (8300/1F)

Paper 1 Foundation tier

Date

Morning
1 hour 30 minutes

Materials

For this paper you must have:

- mathematical instruments.

You must not use a calculator.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the bottom of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .
- You may ask for more answer paper, graph paper and tracing paper.

These must be tagged securely to this answer book.
Please write clearly, in block capitals, to allow character computer recognition.
Centre number \square Candidate number

Surname \square
Forename (s) \square

Answer all questions in the spaces provided.

1 Circle the number that is not a multiple of 6

2 Which symbol makes this statement correct?

$$
0.062 \quad 0.52
$$

Circle your answer.

3 Solve $x-7=56$
Circle your answer.

$$
x=8 \quad x=49 \quad x=56
$$

[^0]4 Circle the expression that can be written as $2 y^{2}$
$(2 y)^{2}$
$2 \times 2 \times y$

$2 \times 2 \times y \times y$

5 The bar chart shows information about how 20 students travel to school.

Show the information in a pictogram.
Use the key given.

6 (a) Work out $\frac{3}{5}$ of 200

$$
200 \div 5=40 \times 3=120
$$

\qquad
\qquad
ba Performance
Answer \qquad

$$
\begin{array}{ll}
0 & 11.8 \% \\
\mathrm{X} & 18.0 \%
\end{array}
$$

6 (b) Work out $25.8+12.6 \div 2$
\qquad
25.8

$$
+12 \cdot 6
$$

$$
\overline{38.4} \div 2=19.2
$$

\qquad
\qquad
\qquad
\qquad

Answer \qquad
bb This early, low-demand question proved more difficult than expected with a facility score of 38%. Many students did not recognise the order of operations, leading to answers of 19.2 (as in the exemplar response) and a single mark given. Those who were aware the division had to be carried out first usually went on to get both available marks.
Lots of students scored nothing as they got the operations in the wrong order and made errors in the arithmetic.

Performance	
2	11.8%
1	52.3%
0	32.3%
X	3.6%

7 Simplify $7 d-2 b+3 a+5 b$
[2 marks]

$$
10 a-7 b
$$

Performance	
2	41.0\%
1	24.6\%
0	28.7\%
X	5.6\%

Answer $10 a-7 b$

$8 \quad$ A bag contains red counters and blue counters in the ratio $\quad 3: 5$
What fraction of the counters is red?
Circle your answer.
$\frac{1}{3}$
$\frac{3}{5}$

$\frac{5}{8}$

8 Performance
1 50.3\%
$0 \quad 47.2 \%$
X 2.6\%

9
Here is a number machine.

9 (a) Work out the output when the input is 12

$$
12 \times 5=60-3=57
$$

\qquad
\qquad

Answer \qquad

9 (b) Work out the input when the output is 7.5

$$
\begin{array}{r}
7.5+3=10.5 \times 5=52.5 \\
52.5 \div 5=10.5-3=7.5
\end{array}
$$

9 (c) Write y as an expression in terms of x.

$$
y=5 x-3
$$

Answer \qquad $y=5 x-3 \quad y \leqslant 5 x-3$

9 The first part of this question was done well by most students. In part (b), many students understood the idea of inverse operations but lost marks through errors in arithmetic or getting their operations confused (as in the exemplar). Even though x and y featured in the number machine, the change of representation to an expression is clearly difficult for Foundation students and many did not attempt the final part. The exemplar response shown suggests confusion in understanding the vocabulary of expression and inequality. In this example, even if the student had not crossed out the correct answer, no mark would be awarded as a choice of answers was offered. It is important to remind students to always cross out work they do not want marked.

$$
y \leqslant 5 x-3
$$

10 In a quiz, teams are asked 20 questions.

Teams score
3 points for a correct answer
0 points for questions not attempted
-2 points for an incorrect answer.

10 (a) Team A has these results.

Work out the total number of points Team A scores.

Performance	
2	69.2%
1	5.6%
0	22.6%
X	2.6%

Answer 30

10 (b) Team B answers 16 out of 20 questions correctly.
Work out the percentage of questions Team B answers correctly.
\qquad
\qquad

2	50.3%
1	10.3%
0	28.2%
\times	11.3%

Answer
(c) After 17 questions, Team C has 35 points.

After 20 questions, Team C has 34 points.
How many of the last three questions are answered correctly, not attempted or answered incorrectly?

1 0\%
$0 \quad 29.2 \%$
X 16.9\%
Not attempted \qquad
Correct 1

Incorrect \qquad

Turn over for the next question

10 In part (b) of this question, the
exemplar response serves as a reminder
to students to read the question carefully and give answers in the form requested. Part (c) proved accessible for many students and those who progressed managed to get both marks.

11 A sequence of patterns uses black squares and white squares.
Here are the first three patterns.

Pattern 1

Pattern 2

Pattern 3

11 (a) Circle the expression for the number of black squares in Pattern n.

[1 mark]

11 (b) Will the number of black squares always be even? Tick a box.

11 In part (a), the incorrect choice
shown in this exemplar was the most
common. This is, perhaps, no surprise as students are often more comfortable with term to term rather than position to term descriptions of sequences. In part (b), the mark was most often given for realising the sequence starts even and goes up in twos so will always be even (as in the exemplar). Explanations using the correct nth term formula from the previous part were rare.

Give a reason for your answer.
because its going up in $2 s$ so which is an even number soil wont be odd and the sequence starts on an even number there is no odd number in the 2 times tables

1	22.1%
0	73.9%
X	4.1%

1282 children visit a sports centre.
50 of the children swim. 4
At least one adult is needed for every 12 children who swim.
The other 32 children dance.
At least one adult is needed for every 15 children who dance.
Work out the minimum number of adults needed for the 82 children.

$$
\begin{aligned}
& 12 \times 5=60 \text { swimmers } \\
& 15 \times 3=45 \text { dance }
\end{aligned}
$$

\qquad
\qquad

12 Performance

4	44.1%
3	5.1%
2	29.2%
1	8.7%
0	7.7%
X	5.1%

Answer

13 Work out the value of x.

Performance	
3	34.9%
2	4.6%
1	1.0%
0	41.0%
X	18.5%

$$
\begin{aligned}
6 x+90 & =180 \\
6 x & =90 \\
x & =15
\end{aligned}
$$

\qquad degrees

14 (a) The sum of two square numbers is 180
What are the two square numbers?

14 (b) Kim says,
"The sum of any two different square numbers is always even."
is she correct?
Write down a calculation to support your answer.

14b	Performance	
	1	33.3\%
	0	32.3\%
	X	34.4\%

14 The exemplar response to part (a)
shows the importance of reading the
question carefully. Here, the student knew
what to do, but lost a mark by not giving the requested answer.

15 A piano competition takes place every 3 years.
A violin competition takes place every 4 years.
2009
2005
2001
Both competitions took place in 2009
1993
15 (a) In which of these years did the violin competition take place?
 Circle your answer.

15 (b) When is the next year after 2009 that both competitions will take place?
\qquad 2009201320172021

15b Performance
1 53.9\%
$0 \quad 38.5 \%$
X $\quad 7.7 \%$

15 (c) In any leap year, the number made by the last two digits is divisible by 4 For example, 1996 and 2004 were leap years because 96 and 04 are divisible by 4 Give a reason why the violin competition will never take place in a leap year.

None of it's last two didgits are

 ever divisible by 4```
15c The exemplar response to part (c) here was
 not sufficient to gain the mark as it did little
more than re-state the condition.
Performance
18.5%
0 50.8%
X 30.8%
```

16 Work out the value of $4(2 x+3 y)$ when $x=5$ and $y=-\frac{1}{2}$
[2 marks]

$$
\begin{aligned}
& 4 \times 2 \times 5=4 \times 10 \\
& 4 \times 3 \times-\frac{1}{2}=4 x
\end{aligned}
$$

17 Factorise $15 x+35 y-40 z$
$5 \operatorname{eryz}(3+7-8)$
$\qquad$

17 Performance
$\begin{array}{ll}1 & 25.6 \% \\ 0 & 37.4 \% \\ \times & 36.9 \%\end{array}$

$$
\text { Answer } S x y(3+7-8 z)
$$

18 Joanne has a fair five-sided spinner.


18 Part (a) was done well. While we take care to ramp demand through a paper, it is sometimes appropriate to ask
a straightforward lead-in question before a more challenging second part. In this case, the shift in demand was significant and few students made progress with part (b). Those who did, as in
the exemplar, listed all outcomes
systematically and extracted
those with a total of four. In the
exemplar, the final mark was lost
as the required probability was
not given.

18 (a) Write down the probability of scoring a 4 with one spin.


18 (b) Work out the probability of scoring a total of 4 with two spins.

| $\times$ |  | 2 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 3 | 4 | 5 |
| 2 | 3 | 4 | 4 | 5 | 6 |
| 2 | 3 | 4 | 4 | 5 | 6 |
| 3 | 4 | 5 | 5 | 6 | 7 |
| 4 | 5 | 6 | 6 | 7 | 8 |


| 3 | $0.5 \%$ |
| :--- | ---: |
| 2 | $1.0 \%$ |
| 1 | $0.5 \%$ |
| 0 | $81.0 \%$ |
| $X$ | $16.9 \%$ |

Answer $\qquad$

19 The diagram shows distances by road between four cities.

Over the three parts, this question discriminated well and the whole range of available marks was accessed. As in the exemplar, common errors in part (a) were around dealing with the 10 more miles, which was ignored or added rather than subtracted. In part (b), the relationship between speed, distance and time was often confused, leading to some unrealistic answers. It was good to see students showing resilience through the question. Many who struggled in part (a) went on to gain marks in (b) and (c).

Not drawn accurately



Bristol

19 (a) Sam drives from Newcastle to Hull, and then from Hull to Bristol.
Tim drives from Newcastle to Liverpool, and then from Liverpool to Bristol.
Sam drives 10 more miles than Tim.

Work out the distance by road from Liverpool to Bristol.
[3 marks]
Newcastle to hull $=145$ miles

19 (b) Rob is going to drive from Hull to Liverpool.
There are road works for 25 miles of the journey.

He assumes his average speed will be
50 mph where there are road works 70 mph for the rest of the journey.

Using his assumptions, work out his journey time.

105 miles
$\times 70 \mathrm{mph}$

$$
7.35 \text { minutes }+\overline{1.25} \text { minutes }
$$

Answer $\qquad$
29.2\%
21.5\%
26.7\%

19 (c) Rob's assumptions about the average speeds are too high.
How does this affect his journey time?
He will take longer them he expected

19c
$0 \quad 22.6 \%$
X $\quad 41.5 \%$

2050 students are asked if they study Geography or History.
The Venn diagram shows some information about their answers.


20 (a) What does the number 7 on the diagram represent?

## that 7 people take both history anch geography

20 (b) 20 students study Geography but not History.
 19 students study History.

Complete the Venn diagram.

Although this topic is not covered in the
current GCSE, the question was well
answered. A common mistake in part (b) was
not to realise the difference in the two given
statements leading to the response in the
exemplar and only 2 out of 3 marks awarded.


21 Here are the instructions on a bottle of fruit squash.

To make fizzy juice mix 2 parts fruit squash with 7 parts lemonade


21 (a) How much fruit squash is needed to make 450 ml of fizzy juice?

$$
450 \div 9=50
$$



Answer $\qquad$ 100 ml

21 (b) Tom has 80 ml of fruit squash.
He also has 210 ml of lemonade.
What is the maximum amount of fizzy juice he can make?


| Performance |  |
| :--- | :--- |
| 3 | $6.7 \%$ |
| 2 | $0 \%$ |
| 1 | $13.9 \%$ |
| 0 | $31.8 \%$ |
|  | $47.7 \%$ |

Answer $\qquad$ ml

22 Four identical circles just fit inside a square as shown.


Not drawn
accurately

Work out the area of the shaded section.
Give your answer in terms of $\pi$.

$$
i 2 \times 12=144 \quad 12 \div 2=6 \div 2=3
$$

$\qquad$

$$
\pi \times 3=3 \pi=3 \times 3 \cdot 14
$$

$$
\begin{array}{r}
3.14 \\
\times \quad 3 \\
\hline 42
\end{array}
$$

## Answer

 $\mathrm{cm}^{2}$22
Current
unfamiliar

23 Bag A contains 10 blue balls and 20 red balls.
Bag $B$ contains 8 blue balls and 12 red balls.


A ball is chosen at random from each bag.
Jo says,
"It is more likely that a blue ball is chosen from Bag A than Bag B because there are more blue balls in Bag A."

Is she correct?
You must show your working.
 out a blue ball whereas its $\frac{8}{20}$ in bay $B$

## Turn over for the next question

$$
\begin{aligned}
& 23 \text { As this was a question about the likelihood of } \\
& \text { an event, it was important for students to work } \\
& \text { with probabilities rather than proportions. For full marks, } \\
& \text { students had to state both probabilities, put them into a } \\
& \text { form to allow a direct comparison and state the answer } \\
& \text { is No. } \\
& \text { Performance } \\
& 3 \\
& 2
\end{aligned} 14.4 \% \text { 2.6\% } \begin{array}{ll}
1 & 30.8 \% \\
0 & 31.8 \% \\
\text { X } & 20.5 \%
\end{array}
$$



27 Use a ruler and a pair of compasses in this question.
Construct the perpendicular bisector of $A B$.

Turn over for the next question

$$
\begin{aligned}
& 27 \text { Performance in this question among those } \\
& \text { who attempted it was better than in some } \\
& \text { earlier questions and, in future, we may look at } \\
& \text { putting these construction questions earlier in } \\
& \text { the paper. This exemplar response was a rare } \\
& \text { one gaining only a single mark for an incomplete } \\
& \text { construction. } \\
& \text { Performance } \\
& 2 \\
& 1 \\
& 0
\end{aligned} 25.1 \% \text { 24.1\% }
$$

28 A circle has diameter 10 cm
A square has side length 6 cm
Not drawn


Use calculations to show that the square will fit inside the circle without touching the edge of the circle.

| $10 \div 2=5$ | Circle $=78.5 \mathrm{~cm}^{[3 \text { marks] }}$ |
| :--- | :--- |
| $5^{2}=25$ | Square $=6 \times 6=36 \mathrm{~cm}^{2}$ |
| $3 \cdot 14 \times 25=78.5$ | Yes it will fit in |

## END OF QUESTIONS

very few in the Higher tier trial were
successful in this question. Most who attempted it
compared areas, which gained no credit.

| Performance |  |
| :--- | ---: |
| 3 | $0.5 \%$ |
| 2 | $0 \%$ |
| 1 | $0 \%$ |
| 0 | $61 \%$ |
| X | $38.5 \%$ |

## PRACTICE PAPER SET 1

ExEmpLAR SCRIPT

## GCSE

## Mathematics

## Specification (8300/2H)

## Paper 2 Higher tier

Date

## Materials

## For this paper you must have:

- a calculator
- mathematical instruments.

Morning
1 hour 30 minutes

## Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the bottom of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book.
- In all calculations, show clearly how you work out your answer.


## Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.
$\square$
Please write clearly, in block capitals, to allow character computer recognition.
Centre number Candidate number

Surname
Forename (s)

Candidate signature $\qquad$

Answer all questions in the spaces provided.

1 Here is a linear sequence.
$\begin{array}{llll}5 & 13 & 21 & 29\end{array}$

Circle the expression for the $n$th term of the sequence.
$n+8 \quad 5 n+8 \quad 8 n \quad 8 n-3$


Performance
1 77.4\%
0 22.2\%
X $0.4 \%$

2 Circle the fraction that is equivalent to $0.05 \%$

$-2$
2

[1 mark]

6
questions of this type are not always easy for students but are almost always attempted. In Q2, all the wrong options were commonly seen. In Q3, the incorrect choice of $2 x$ as the gradient was surprisingly common and in Q4, $y=x+k$ was often seen.
$4 \quad y$ is directly proportional to $x$ and $k$ is a constant.
Circle the correct equation.
$y=x+k \quad y=\frac{k}{x} \quad y=x-k$

|  | Performance |  |
| :--- | ---: | ---: |
| 1 | $51.6 \%$ |  |
|  | 0 | $44.0 \%$ |
|  | X | $4.4 \%$ |

5 Jack and Kylie are asked to work out this calculation to 2 decimal places.

$$
\frac{\sqrt{9.8 \times 12.1}}{19.4+30.2}
$$

Jack's answer is 0.22
Kyle's answer is 30.76

How have they obtained these answers?
Is either answer correct?
5 While this was not a question on new
content, it addressed a new skill from AO 3

- evaluating methods and solutions - so it was a novel question for this group of students. Some were able to identify the correct answer and show how Jack got to that correct answer. Very few students were able to identify and explain where Kyle went wrong.

Performance

| 3 | $1.2 \%$ |
| :---: | ---: |
| 2 | $20.2 \%$ |
| 1 | $30.2 \%$ |
| 0 | $45.2 \%$ |
| $X$ | $3.2 \%$ |

[3 marks]
Jack did

$$
\frac{\sqrt{118 \cdot 58}}{49.6}=
$$

$$
\frac{10.8894 \ldots}{49.6}=0.219
$$

He is right

$$
\text { Kylie did } \sqrt{9.8 \times 12.1}=\frac{10.8894 \ldots}{19.4+30.2}=30.76
$$

6 (a) Solve the inequality $3 x \leqslant 18$

$$
3 x \leqslant 18=x \leqslant 6
$$

Performance
1 60.1\%
$0 \quad 33.5 \%$
X $6.5 \%$

$$
\text { Answer } \quad \sim \leqslant 6
$$

6 (b) Solve the inequality $4(x+2)>12$

$$
4 x+8>12 \quad 4 x>4 \quad x>1
$$

6 (c) Represent the solution set that satisfies both answers to parts (a) and (b) on the number line.

Answer or $>1$
bb Performance
2 46.4\%
$1 \quad 31.1 \%$
0 17.7\%
X $4.8 \%$

1 mark]


7 This formula works out the tax you pay.

$$
T=0.2(E-10600)
$$

$T$ is the tax you pay in pounds.
$E$ is the amount you earn in pounds.


Alison pays $£ 5200$ tax.
Work out the amount she earns.

$$
\begin{aligned}
& 5200 \div 0.2=26000 \\
& 26000+10600=36600 \\
& (36600-10600) \times 0.2=5200
\end{aligned}
$$

## Answer £ <br> $\qquad$

8 Solve $x^{2}=30.25$

$$
\sqrt{30} \cdot 25=5.5
$$

Answer $5 \cdot 5$

| Performance |  |
| :--- | ---: |
| 2 | $8.9 \%$ |
| 1 | $85.5 \%$ |
| 0 | $3.2 \%$ |
| X | $2.4 \%$ |

9 Here are two piles of the same type of paper.
Each sheet of paper is $\frac{7}{1000} \mathrm{~cm}$ thick.
The taller pile is $10 \frac{1}{2} \mathrm{~cm}$ high.

height of taller pile : height of shorter pile $=3: 2$

Work out the number of sheets of paper in the shorter pile.
[3 marks]

$$
10.5 \div \frac{7}{1000}=1500
$$

$$
1500 \div 5=300
$$

$$
300 \times 2=600
$$

|  |  |
| :--- | :--- |
|  | $16.5 \%$ |
| $X$ | $10.1 \%$ |

## Answer

10 Here are four triangles.


C



10 (a) Which two triangles are congruent?
Circle your answers.
A
(B)
(C)
D


10 (b) Circle the reason for your answer to part (a).

## SSS

ASA


RUS

| 10b | Performance |
| :---: | ---: |
| 1 | $62.5 \%$ |
|  | $31.5 \%$ |
|  |  |
|  |  |
|  |  |
|  |  |

11 Volume of a sphere $=\frac{4}{3} \pi r^{3}$ where $r$ is the radius.
Identical spheres of radius 9.5 cm are packed tightly into a cuboid.


Front view


11 (a) Work out the total volume of the spheres in the cuboid.

$$
4 / 3 \times 11 \times 9.5^{3}=3591.364002
$$

$14365.45601 \mathrm{~cm}^{3}$

11a Performance
$358.5 \%$
$23.6 \%$
1 25.0\%
0 4.4\%
X 8.5\%
$\qquad$
$\qquad$
$\qquad$

$$
\text { Answer } 14365.5
$$

$$
\mathrm{cm}^{3}
$$

11 (b) Work out the volume of the cuboid.

$$
\begin{gathered}
(4.5 \times 4) \times(9.5 \times 4) \times(9.5 \times 2)=38 \times 38 \times 19 \\
=27436
\end{gathered}
$$

11b
Performance
4 48.0\%
3 2.4\%

2 10.1\%
1 12.1\%
$\begin{array}{lr}0 & 7.7 \% \\ X & 10.8 \%\end{array}$
Answer 27436 $\mathrm{cm}^{3}$

11 (c) Work out the total volume of the spheres as a percentage of the volume of the cuboid. [2 marks]

$$
14365=0.523489 \ldots .
$$

$\qquad$

$$
27436
$$

$$
x 100=52.3489
$$

11c
Answer 52.3 \%
$\qquad$
$\qquad$

$249.6 \%$
$1 \quad 6.1 \%$
$\begin{array}{ll}0 & 11.7 \% \\ \mathrm{X} & 32.7 \%\end{array}$
X $32.7 \%$

12 In this question all lengths are in centimetres.


$$
\begin{array}{ll}
\text { Given } & A B: B C=1: 2 \\
\text { show that } & A C: B C=3: 4
\end{array}
$$

$$
\begin{aligned}
& 2 \times 7+4=18=A C \\
& 5 \times 7-11=24=B C
\end{aligned}
$$

$$
\begin{aligned}
& 18 \div 6: 3 \\
& 24 \div 6=4=3: 4
\end{aligned}
$$

12This 5 mark question required students to be organised in setting out their working. It was common to see the translation of the relationship between
AB and BC into an equation done incorrectly, leading to a fractional value of $x$ and, usually, no more than 1 mark gained. Students who had the ratio the right way round and worked methodically often went on to get full marks here.

| Performance |  |
| :--- | ---: |
| 5 | $11.7 \%$ |
| 4 | $1.6 \%$ |
| 3 | $4.0 \%$ |
| 2 | $5.2 \%$ |
| 1 | $13.3 \%$ |
| 0 | $35.5 \%$ |
| $X$ | $28.6 \%$ |

13 A menu has a choice of 3 starters, 5 main courses and 4 desserts.
How many different choices of a 3-course meal are possible?
Circle your answer.

| Performance |  |
| :--- | ---: |
| 1 | $80.2 \%$ |
| 0 | $14.9 \%$ |
| $X$ | $4.8 \%$ |

14 A triangle has vertices at $A(2,1), B(3,4)$ and $C(6,1)$
The triangle is reflected.
Points $A$ and $C$ do not move.
Circle the equation of the line of reflection.

$$
y=x
$$

$$
x=2
$$


$x=4$


As in this exemplar, successful students were often those who drew a rough sketch of the situation. This is a useful insight for us and we will try and ensure some working space is available around multiple choice questions, as it was here. In answering such questions, students should be encouraged to do some rough working if needed to arrive at the correct choice.

Performance

| 1 | $48.8 \%$ |
| :--- | :--- |
| 0 | $41.1 \%$ |
| $X$ | $10.1 \%$ |

Turn over for the next question

15 The area of a right-angled, isosceles triangle is $4 \mathrm{~cm}^{2}$


Not drawn accurately

Work out the perimeter of the triangle in centimetres.
Give your answer in the form $a+b \sqrt{c}$, where $a, b$ and $c$ are integers.

$2 \sqrt{2} \times 2 \sqrt{2}=8$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Answer
15 This proved to be a challenging question, with many students not attempting it. For Higher tier students, the knowledge required to work through this problem should be familiar, but connecting the steps and working with surds in an organised way was only managed by a few. This question shows the increased structural demand of papers for this new GCSE in that, although it is at the halfway point in the paper, it is designed to discriminate at grades 6 and 7 ( $B$ and $A$ currently). In reviewing performance, this question had a much lower success rate than, for example, Q17 and should, perhaps, have appeared later in the paper.

| Performance |  |
| :--- | ---: |
| 4 | $6.9 \%$ |
| 3 | $4.0 \%$ |
| 2 | $7.3 \%$ |
| 1 | $10.1 \%$ |
| 0 | $37.5 \%$ |
| X | $34.3 \%$ |

16 On 1st January 2012 Beth invested some money in a bank account.
The account pays $2.5 \%$ compound interest per year.
On 1st January 2013 Beth withdrew $£ 1000$ from the account.
On 1st January 2014 she had $£ 17466$ in the account.

Work out how much money Beth originally invested in the account.
Money $\times$ Multiplier -1000
$17466 \div 1.025=17040+1000=18040$
$18040 \div 1.025=17600$

```
1 6 \text { Performance}
 4 14.1%
 3 0.0%
 2.4%
 1 2.4%
 0 60.5%
 X 20.6%
```


$17466 \div 1.025=17040+1000=18040$
$18040 \div 1.025=17600$
$\square$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Answer \& 17600

Turn over for the next question

17 The probability that Gina goes to the gym on Saturday is 0.9
The probability that Dave goes to the gym on Saturday is 0.6
These probabilities are independent.

17 (a) Calculate the probability that both Gina and Dave do not go to the gym on Saturday.
$1-0.9=0.1$ Gina not going on Satuaden $1-0.6=0.4$ Dave not going on Satavolys $0.1 \times 0.4=0.04$

17a

| Performance |  |
| :--- | ---: |
| 2 | $35.5 \%$ |
| 1 | $28.6 \%$ |
| 0 | $20.6 \%$ |
| $X$ | $15.3 \%$ |

17 (b) If Gina goes to the gym on Saturday the probability that she goes on Sunday is 0.2
If Gina does not go to the gym on Saturday the probability that she goes on Sunday is 0.7

Calculate the probability that Gina goes to the gym on exactly one of the two days.


Sat and Not Sm $=0.9 \times 0.8=0.72$ Not Sat and Sun $=0.1 \times 0.7=0.07$

$$
0.72+0.07=0.79
$$

17 As shown here, there were a lot of well structured, correct answers to this probability problem, many using the space provided to sketch a tree diagram.

18 The height, $h$ metres, of a particle at time, $t$ seconds, is given by the function

$$
\begin{array}{ll}
h=0 & 0 \leqslant t<2 \\
h=(14-t)(t-2) & 2 \leqslant t \leqslant 10
\end{array}
$$

18 (a) Draw a graph to show the height of the particle in the first 10 seconds.

 pleasing to see some good responses to this question testing new GCSE content. Students were maybe familiar with the topic from either the linked pair pilot or further maths certificate. In laying out this question, we had to decide whether to keep it all on one page or allow more space for students to draw out a table of coordinates. With hindsight, and in live papers, we would probably choose to go on to a facing page to give room for calculation.

18 (b) By joining the points on the curve where $t=3$ and $t=7$ with a straight line, work out the average rate of change of height between 3 and 7 seconds.
[2 marks]


19 In this question use

$$
\begin{aligned}
& 1 \text { pound }=0.4536 \text { kilograms } \\
& 1 \text { inch }=0.0254 \text { metres }
\end{aligned}
$$

The pressure of a basketball is 7.5 pounds per square inch.
Work out this pressure in grams per square centimetre.

$$
0.4536 \times 7.5=3.402
$$

$$
0.0254^{2}=6.4516 \times 10^{-4}
$$

$$
=0.80644516
$$

$3.402 \times 0.0064516$

$$
=0.0219483432
$$ The speed of 50 vehicles was measured travelling along a road.

| Speed, $s$ (mph) | Number of cars |
| :---: | :---: |
| $0<s \leqslant 40$ | 2 |
| $40<s \leqslant 60$ | 11 |
| $60<s \leqslant 75$ | 24 |
| $75<s \leqslant 90$ | 9 |
| $90<s$ | 4 |

20
In this question, many students understood how to estimate the number of cars in the sample exceeding the speed limit, but struggled to get the correct likely income from fines. Part (b) was well answered by many, with sensible comments about the limitations of the small sample.

20 (a) Every driver travelling at more than 70 mph is fined $£ 60$
On average, 8400 drivers use the road each day.
Estimate the total amount of money raised from fines on the road each day.

$$
8+9+4=21
$$

$21 \times 8400=176400$

Answer \& 176,400

20 (b) Mia says,
" $4 \%$ of vehicles on the road travel at 40 mph or less."
Explain why she might be wrong.


At different times of the day, traffic will be at different speeds so she would need to measure all day.

21 (a) Write $x^{2}-10 x+29$ in the form $(x-a)^{2}+b$

$$
(x-5)^{2}-5^{2}+29
$$

| Performance |  |
| :---: | ---: |
| 2 | $25.0 \%$ |
| 1 | $7.7 \%$ |
| 0 | $35.9 \%$ |
| $X$ | $31.5 \%$ |

Answer $(x-5)^{2}+54$

21 (b) A sketch of $y=x^{2}+c x+d$ is shown.
The turning point is $(3,5)$


Not drawn accurately

21
Most students who recognised the need to complete the square did so successfully, though a few made slips like the one shown here. Only one student in the trial was successful with part (b), a new topic in this new GCSE.

Work out the values of $c$ and $d$.


22 Two triangular lawns are surrounded by fences as shown.
The lawns are also separated by a fence.

## Not drawn

 accurately22 Where creditworthy attempts were
seen in this question, they tended to stop at 2 marks for successfully finding the missing sides of the right angled triangle.
In the trial, as in the new specification, students were expected to know the cosine rule and, as in this exemplar, they often and unsurprisingly did not.

| Performance |  |
| :--- | ---: |
| 5 | $4.9 \%$ |
| 4 | $1.6 \%$ |
| 3 | $1.2 \%$ |
| 2 | $16.9 \%$ |
| 1 | $7.3 \%$ |
| 0 | $37.5 \%$ |
| X | $30.7 \%$ |

Work out the total length of the five fences.
$\square$
$120+92 \cdot 6+100+76 \cdot 6+64 \cdot 28=453 \cdot 48$

23 The cumulative frequency diagram shows the times taken by runners to complete a half-marathon.


On the grid opposite, draw a histogram to represent the data.
Use this table to help you. .

| Time,t (minutes) | CF | f | width | f.density |
| :---: | :---: | :---: | :---: | :---: |
| $80 \leqslant t<100$ | 8 | 8 | 20 | 0.4 |
| $100 \leqslant t<120$ | 56 | 48 | 20 | 2.4 |
| $120 \leqslant t<160$ | 100 | 44 | 40 | 1.1 |
| $160 \leqslant t<200$ | 110 | 10 | 40 | 0.25 |
| $200 \leqslant t<300$ | 120 | 10 | 100 | 0.1 |



## Choose AQA for GCSE Maths

1

## Better assessment

We believe in clean and clear assessment. That hasn't changed. These papers show you our approach, demonstrates how students responded and gives you an insight into our assessment strategy.

## Better to work with

The Maths team is always on hand to answer your questions. We focus on building assessments that allow students to demonstrate their maths ability and on giving you the support you need to ensure students are as prepared as they can be. Call us on 01619573852 or email us at maths@aqa.org.uk

## Better resources

Our unique, comprehensive resource package, All About Maths, includes our Route Maps customisable schemes of learning supported by teaching guidance, lesson plans, homework sheets, topic tests and links to the best of the web - all you need to support your teaching of our new GCSE Maths. See the full suite at aqamaths.aqa.org.uk


## And don't forget Better Maths...



We firmly believe there is more to teaching maths than getting students through their GCSEs. Our Better Maths blog and weekly \#Mathschat gives you another way to share your ideas, skills and knowledge to equip young people with the skills they need to make sense of a changing world and build a better future.

## Join AQA - it's easy to get started

 Join thousands of teachers who have already chosen AQA for their Maths GCSE in just three simple steps.

## Tell us you're with us

fill in this quick form aqa.org.uk/joiningform. We'll send you everything you need and the maths team's contact details.


Let your exams officer know
we'll send you all the entry information you need to give your exams officer.


Access free support and resources log in to All About Maths, which has everything you need to plan, teach and assess with confidence.

Saying yes to AQA really is as easy as 1, 2, 3 . Just visit aqa.org.uk/joinaqamaths to get started.

Contact our dedicated subject team:
T: 01619573852
E: maths@aqa.org.uk


[^0]:    1 87.2\%
    $0 \quad 12.3 \%$
    X 0.5\%

